-
大小: 2KB文件類型: .py金幣: 1下載: 0 次發(fā)布日期: 2021-05-29
- 語(yǔ)言: Python
- 標(biāo)簽: 機(jī)器學(xué)習(xí)??knn??
資源簡(jiǎn)介
https://blog.csdn.net/weixin_44049128/article/details/86502423此篇博文代碼。
代碼片段和文件信息
#!/usr/bin/env?python
#?-*-?coding:?utf-8?-*-
#?USAGE
#?python?classify_iris.py
#?python?classify_iris.py?--model?svm
#?import?the?necessary?packages
#?scikit-learn的Python機(jī)器學(xué)習(xí)方法
from?sklearn.neighbors?import?KNeighborsClassifier
from?sklearn.naive_bayes?import?GaussianNB
from?sklearn.linear_model?import?LogisticRegression
from?sklearn.svm?import?SVC
from?sklearn.tree?import?DecisionTreeClassifier
from?sklearn.ensemble?import?RandomForestClassifier
from?sklearn.neural_network?import?MLPClassifier
#?將數(shù)據(jù)分成訓(xùn)練和測(cè)試子集的數(shù)據(jù)集拆分方法
from?sklearn.model_selection?import?train_test_split
#?來(lái)自scikit-learn的分類報(bào)告實(shí)用程序?qū)⒋蛴∥覀儥C(jī)器學(xué)習(xí)結(jié)果的摘要
from?sklearn.metrics?import?classification_report
#?Iris數(shù)據(jù)集,內(nèi)置于scikit-learn
from?sklearn.datasets?import?load_iris
#?用于命令行參數(shù)解析的工具
import?argparse
#?解析命令行參數(shù),選擇機(jī)器學(xué)習(xí)算法模型
ap?=?argparse.ArgumentParser()
ap.add_argument(“-m“?“--model“?type=str?default=“knn“
help=“type?of?python?machine?learning?model?to?use“)
args?=?vars(ap.parse_args())
評(píng)論
共有 條評(píng)論