-
大小: 10KB文件類型: .py金幣: 1下載: 0 次發(fā)布日期: 2021-05-24
- 語(yǔ)言: Python
- 標(biāo)簽: 神經(jīng)網(wǎng)絡(luò)??
資源簡(jiǎn)介
有284個(gè)訓(xùn)練樣本,273個(gè)測(cè)試樣本,通過(guò)對(duì)數(shù)據(jù)的處理后進(jìn)入基于LSTM的多層循環(huán)神經(jīng)網(wǎng)絡(luò)進(jìn)行訓(xùn)練,測(cè)試樣本測(cè)試準(zhǔn)確率可達(dá)70+
代碼片段和文件信息
“““
??????┏┛?┻━━━━━┛?┻┓
??????┃ ?┃
??????┃ ━ ┃
??????┃ ┳┛ ??┗┳ ┃
??????┃ ?┃
??????┃ ┻ ┃
??????┃ ?┃
??????┗━┓ ┏━━━┛
????????┃ ┃???神獸保佑
????????┃ ┃???代碼無(wú)BUG!
????????┃ ┗━━━━━━━━━┓
????????┃ ????┣┓
????????┃ ?????????┏┛
????????┗━┓?┓?┏━━━┳?┓?┏━┛
??????????┃?┫?┫???┃?┫?┫
??????????┗━┻━┛???┗━┻━┛
“““
import?tensorflow?as?tf
import??numpy?as?np
import??scipy.io
import?time
data?=scipy.io.loadmat(‘G2MM06_NormalDataSet_train.mat‘)
data1=scipy.io.loadmat(‘G2MM06_NormalDataSet_test.mat‘)
print(data1[‘DataSet‘][0][0][0][0][5])
pi=data1[‘DataSet‘][0][0][0][0][5]
print(pi[0][0]pi[0][1])
log_dir=‘/tmp/tensorflow/logs/12‘
“““
X_train[0]=np.array(X_train[0])
X_train[0]=np.array(X_train[0])?
print(X_train[0][0][1]np.shape(X_train[0]))
“““
lst=[]
for?m?in?range(284):
?????X_train?=?data[‘DataSet‘][m][0][0][0][2]
?????X_train=X_train.T
?????pi?=?data[‘DataSet‘][m][0][0][0][5]
?????
?????for?k?in?range(6):
???????for?i?in?range(57):
?????????for?j?in?range(1+i):
?????????????lst.append(X_train[k][i][j])
???????lst.append(pi[0][0])
???????lst.append(pi[0][1])
?????????
X_trainNew1=np.array(lst)
X_trainNew1=X_trainNew1.reshape([-11655])
X_trainMu1=data[‘DataSet‘][0][0][0][0][1]
for?i?in?range(283):
????X_trainMu1=np.hstack((X_trainMu1data[‘DataSet‘][i+1][0][0][0][1]))
X_trainMu1=X_trainMu1.T
X_trainNew1?=?np.hstack((X_trainNew1X_trainMu1))
print(“訓(xùn)練集“)
print(X_trainNew1np.shape(X_trainNew1))
lst3=[]
for?m?in?range(284):
?????X_train?=?data[‘DataSet‘][m][0][0][0][4]
?????X_train=X_train.T
?????for?k?in?range(6):
???????for?i?in?range(57):
?????????for?j?in?range(1+i):
?????????????lst3.append(X_train[k][i][j])
X_trainNew2=np.array(lst3)
X_trainNew2=X_trainNew2.reshape([-11653])
X_trainMu2=data[‘DataSet‘][0][0][0][0][3]
for?i?in?range(283):
????X_trainMu2=np.hstack((X_trainMu2data[‘DataSet‘][i+1][0][0][0][3]))
X_trainMu2=X_trainMu2.T
X_trainNew2?=?np.hstack((X_trainNew2X_trainMu2))
print(“訓(xùn)練集“)
print(X_trainNew2np.shape(X_trainNew2))
X_trainNew3=np.hstack((X_trainNew1X_trainNew2))
print(np.shape(X_trainNew3))
lst1=[]
for?m?in?range(273):
?????X_test?=?data1[‘DataSet‘][m][0][0][0][2]
?????X_test=X_test.T
?????pi?=?data1[‘DataSet‘][m][0][0][0][5]
?????for?k?in?range(6):
???????for?i?in?range(57):
?????????for?j?in?range(1+i):
?????????????lst1.append(X_test[k][i][j])
???????lst1.append(pi[0][0])
???????lst1.append(pi[0][1])
X_testNew1=np.array(lst1)
X_testNew1=X_testNew1.reshape([-11655])
X_testMu1=data1[‘DataSet‘][0][0][0][0][1]
for?i?in?range(272):
????X_testMu1=np.hstack((X_testMu1data1[‘DataSet‘][i+1][0][0][0][1]))
X_testMu1=X_testMu1.T
X_testNew1?=?np.hstack((X_testNew1X_testMu1))
print(“測(cè)試集“)
print(X_testNew1np.shape(X_testNew1))
lst4=[]
for?m?in?range(273):
?????X_test?=?data1[‘DataSet‘][m][0][0][0][4]
?????X_test=X_test.T
?????for?k?in?range(6):
???????for?i?in?range(57):
?????????for?j?in?range(1+i):
?????????????lst4.append(X_test[k][i][j])
X_testNew2=np.array(lst4)
X_testNew2
評(píng)論
共有 條評(píng)論