資源簡(jiǎn)介
可以做圖像分割,數(shù)據(jù)挖掘,目前,針對(duì)K-Means算法研究及應(yīng)用,尤其是在文本聚類挖掘?qū)用娴膽?yīng)用研究越來越多。
K-means算法是很典型的基于距離的聚類算法,采用距離作為相似性的評(píng)價(jià)指標(biāo),即認(rèn)為兩個(gè)對(duì)象的距離越近,其相似度就越大。該算法認(rèn)為簇是由距離靠近的對(duì)象組成的,因此把得到緊湊且獨(dú)立的簇作為最終目標(biāo)。

代碼片段和文件信息
function?ret?=?Crossover(pcrosschromscale_group)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%function?chrom?=?Crossover(pcchromscale_group)函數(shù)完成交叉操作
%pc:?input交叉概率
%chrom:input染色體
%scale_group:?input種群規(guī)模
%new_chrom:?output交叉后的染色體
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for?i?=?1?:?scale_group
????%交叉概率決定是否進(jìn)行交叉
????pick?=?rand;
????while?pick?==?0
????????pick?=?rand;
????end
????if?pick?>?pcross
????????continue;
????end
????%隨機(jī)選擇交叉?zhèn)€體
????index?=?ceil(rand(12)*scale_group);
????while?index(1)?==?index(2)?||?index(1)?*?index(2)?==?0
?????????index?=?ceil(rand(12)*scale_group);
????end
????%隨機(jī)選擇交叉位置
????position?=?ceil(rand*3);
????while?position?==?0
????????position?=?ceil(rand*3);
????end
????temp?=?chrom(index(1)position);
????chrom(index(1)position)?=?chrom(index(2)position);
????chrom(index(2)position)?=?temp;
end
ret?=?chrom;
end
?屬性????????????大小?????日期????時(shí)間???名稱
-----------?---------??----------?-----??----
?????文件????????995??2015-06-29?15:03??Crossover.m
?????文件???????4751??2015-06-29?20:15??GA_clustering.m
?????文件????????874??2015-06-29?15:03??Mutation.m
?????文件????????757??2015-06-30?12:40??selection.m
-----------?---------??----------?-----??----
?????????????????7377????????????????????4
評(píng)論
共有 條評(píng)論