-
大小: 12KB文件類型: .gz金幣: 1下載: 0 次發(fā)布日期: 2021-06-02
- 語言: 其他
- 標簽: deeplearning??radio-signal??
資源簡介
基于深度學習的通信信號調(diào)制方式識別,cldnn,lstm,resnet
代碼片段和文件信息
#?coding:?utf-8
#?##?Modulation?Recognition?Example:?RML2016.10b?Dataset?+?VT-CNN2?Mod-Rec?Network
#?More?information?on?this?classification?method?can?be?found?at
#?https://arxiv.org/abs/1602.04105
#?More?information?on?the?RML2016.10b?dataset?can?be?found?at
#?http://pubs.gnuradio.org/index.php/grcon/article/view/11
#?Please?cite?derivative?works
#?‘‘‘
#?@article{convnetmodrec
#???title={Convolutional?Radio?Modulation?Recognition?Networks}
#???author={O‘Shea?Timothy?J?and?Corgan?Johnathan?and?Clancy?T.?Charles}
#???journal={arXiv?preprint?arXiv:1602.04105}
#???year={2016}
#?}
#?@article{rml_datasets
#???title={Radio?Machine?Learning?Dataset?Generation?with?GNU?Radio}
#???author={O‘Shea?Timothy?J?and?West?Nathan}
#???journal={Proceedings?of?the?6th?GNU?Radio?Conference}
#???year={2016}
#?}
#?‘‘‘
#?To?run?this?example?you?will?need?to?download?or?generate?the?RML2016.10b?dataset?(https://radioml.com/datasets/)
#?You?will?also?need?Keras?installed?with?either?the?Theano?or?Tensor?Flow?backend?working.
#?Have?fun!
“““
Run?code?for?CLDNN?Sub-Sampling?PCA?and?SNR?Training?experiments?by?uncommenting?the?appropriate?code?blocks
For?all?the?experiments?the?value?on?line?224?(11200?for?no?modifications)?must?be?changed?according?to?the?dimensions?specified-
128?(1)?->?11200;?64?(1/2)?->?6080;?32?(1/4)?->?3520;?16?(1/8)?->?2240;?8?(1/16)?->?1600;?4?(1/32)?->?1280
For?PCA?experiments:?Uncomment?‘PCA?Setup‘?and?‘PCA‘?code?blocks
For?Sub-Sampling?experiments:?Uncomment?‘Sub-Sampling?Setup‘?and?1?of?the?3?subsampling?code?blocks
For?Individual?SNR?Training?experiments:?Uncomment?‘SNR?Setup‘?and?‘SNR?Training‘?code?blocks
For?no?dimensionality?reduction?experiments:?Run?the?code?as?is?without?uncommenting?any?code?block
“““
#?In[1]:
#?Import?all?the?things?we?need?---
#?by?setting?env?variables?before?Keras?import?you?can?set?up?which?backend?and?which?GPU?it?uses
#get_ipython().magic(u‘matplotlib?inline‘)
import?osrandom
#os.environ[“KERAS_BACKEND“]?=?“theano“
os.environ[“KERAS_BACKEND“]?=?“tensorflow“
#os.environ[“THEANO_FLAGS“]??=?“device=gpu%d“%(1)???#disabled?because?we?do?not?have?a?hardware?GPU
import?numpy?as?np
#import?theano?as?th
#import?theano.tensor?as?T
from?keras.utils?import?np_utils
import?keras.models?as?models
from?keras.layers.core?import?ReshapeDenseDropoutActivationFlatten
from?keras.layers.convolutional?import?Conv2D?MaxPooling2D?ZeroPadding2D
from?keras.regularizers?import?*
from?keras.optimizers?import?adam
from?keras.optimizers?import?adagrad
import?matplotlib
matplotlib.use(‘Agg‘)
import?matplotlib.pyplot?as?plt
import?seaborn?as?sns
import?cPickle?random?sys?keras
from?keras.utils?import?multi_gpu_model
from?keras?import?backend?as?K
K.tensorflow_backend._get_available_gpus()
import?tensorflow?as?tf
#?~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#?Sub-Sampling?Setup
“““sub_samples?=?16“????#?Number?of?samples?after?Sub-Sampling“““
#?~~~~~~~~~~~~~
評論
共有 條評論