資源簡(jiǎn)介
BP神經(jīng)網(wǎng)絡(luò)回歸的matlab程序,包含了數(shù)據(jù)以及測(cè)試數(shù)據(jù)
代碼片段和文件信息
clear?all;
format?long;
load(‘Data2‘);
load(‘Class2‘);%%%%%%%導(dǎo)入數(shù)據(jù)類(lèi)
m=size(Data22);%%%%列數(shù)11
n=size(Data21);%%%%%行數(shù)4898
W1=[];%%%%%%%%%%%%權(quán)值矩陣輸入層到隱含層
W2=[];%%%%%%%%%%%權(quán)值矩陣隱含層到輸出層
Data2_Normalization=[];
alpha=0.5;%%%%%學(xué)習(xí)速率
bHide=[];%%%%%%%%%隱含層偏置量
bOut=[];%%%%%%%%%%輸出層偏置量
theta=0.5;
error_1=[];
t=1;
Hide=6;%%%%%%%%隱藏層節(jié)點(diǎn)數(shù)
Out=1;%%%%%%%%%輸出層節(jié)點(diǎn)
In=m;%%%%%%%%%%輸入層節(jié)點(diǎn)
%%%%%%%%%%%%輸入數(shù)據(jù)歸一化
number=0;
for?i=1:m
????Max=max(Data2(:i));
????Min=min(Data2(:i));
????for?j=1:n
?????????Data2_Normalization(ji)=(Data2(ji)-Min)/(Max-Min);
????end
end
%%%%%%%%%%%%%%%類(lèi)歸一化
for?i=1:1
????Max=max(Class2(:i));
????Min=min(Class2(:i));
for?j=1:n
????Class2_Normalization(j)=(Class2(ji)-Min)/(Max-Min);
????Class2_Normalization=Class2_Normalization‘;
end
end
for?j=1:Hide
fo
?屬性????????????大小?????日期????時(shí)間???名稱(chēng)
-----------?---------??----------?-----??----
?????文件????????1251??2018-07-17?17:26??BP回歸\Class2.mat
?????文件?????????341??2018-07-18?00:19??BP回歸\Class2text.mat
?????文件???????14525??2018-07-17?17:24??BP回歸\Data2.mat
?????文件????????1915??2018-07-18?00:19??BP回歸\Data2text.mat
?????文件????????3578??2018-07-25?14:21??BP回歸\regression.m
評(píng)論
共有 條評(píng)論