xxxx18一60岁hd中国/日韩女同互慰一区二区/西西人体扒开双腿无遮挡/日韩欧美黄色一级片 - 色护士精品影院www

資源簡(jiǎn)介

《模式識(shí)別與人工智能(基于MATLAB)》程序&課件

資源截圖

代碼片段和文件信息

%?clc;
close?all;clear?all;
p=[?1739.94 1675.15 2395.96
373.3 3087.05 2429.47
1756.77 1652 1514.98
864.45 1647.31 2665.9
222.85 3059.54 2002.33
877.88 2031.66 3071.18
1803.58 1583.12 2163.05
2352.12 2557.04 1411.53
401.3 3259.94 2150.98
363.34 3477.95 2462.86
1571.17 1731.04 1735.33
104.8 3389.83 2421.83
499.85 3305.75 2196.22
2297.28 3340.14 535.62
2092.62 3177.21 584.32
1418.79 1775.89 2772.9
1845.59 1918.81 2226.49
2205.36 3243.74 1202.69
2949.16 3244.44 662.42
1692.62 1867.5 2108.97
1680.67 1575.78 1725.1
2802.88 3017.11 1984.98
172.78 3084.49 2328.65
2063.54 3199.76 1257.21
1449.58 1641.58 3405.12
1651.52 1713.28 1570.38
341.59 3076.62 2438.63
291.02 3095.68 2088.95
237.63 3077.78 2251.96
1702.8 1639.79 2068.74
1877.93 1860.96 1975.3
867.81 2334.68 2535.1
1831.49 1713.11 1604.68
460.69 3274.77 2172.99
2374.98 3346.98 975.31
2271.89 3482.97 946.7
1783.64 1597.99 2261.31
198.83 3250.45 2445.08
1494.63 2072.59 2550.51
1597.03 1921.52 2126.76
1598.93 1921.08 1623.33
1243.13 1814.07 3441.07
2336.31 2640.26 1599.63
354 3300.12 2373.61
2144.47 2501.62 591.51
426.31 3105.29 2057.8
1507.13 1556.89 1954.51
343.07 3271.72 2036.94
2201.94 3196.22 935.53
2232.43 3077.87 1298.87
1580.1 1752.07 2463.04
1962.4 1594.97 1835.95
1495.18 1957.44 3498.02
1125.17 1594.39 2937.73
24.22 3447.31 2145.01
1269.07 1910.72 2701.97
1802.07 1725.81 1966.35
1817.36 1927.4 2328.79
1860.45 1782.88 1875.13
];
[numn]=size(p);????%樣品數(shù)目
centernum=4;????????%類別數(shù)目

IDXO=[1?2?3?4?4?4?4?4?4?4?4?4?4?4?4?4?4?4?4?4?4?4?4?4?4?4?4?4?4?4?4?4?4?4?4?4?4?4?4?4?4?4?4?4?4?4?4?4?4?4?4?4?4?4?4?4?4?4?4?];
%?size(IDXO)
CO(1:)=[?1739.94 ?1675.15 ?2395.96];
CO(2:)=[373.3 3087.05 2429.47];
CO(3:)=[1756.77 1652 1514.98];
%?s1=find(IDXO==1);%聚類號(hào)為1的樣品在p中的序號(hào)
%?s11=p(s1:)
s4=find(IDXO==4);%聚類號(hào)為4的樣品在p中的序號(hào)
s44=p(s4:);%全部為4類的樣品矩陣
CO(4:)=[sum(s44(:1))/59sum(s44(:2))/59sum(s44(:3))/59];%第4類的中心
JO=0;
j1=0;?j2=0;?j3=0;?j4=0;
for?i=1:num
????if?IDXO(i)==4
????????j4=j4+sqrt((p(i1)-CO(11))^2+(p(i2)-CO(12))^2+(p(i3)-CO(13))^2);
????end
end
?JO=j1+j2+j3+j4;%四種類別的類內(nèi)所有點(diǎn)與該類中心的距離和
?JO
?C=CO;J=JO;IDX=IDXO;

time=1;
Tbegin=10;Tover=0.1;%起始溫度,終止溫度
L=300;?????%內(nèi)層循環(huán)次數(shù)
T=Tbegin;%初始化溫度參數(shù)
timeb=0;%最優(yōu)目標(biāo)首次出現(xiàn)的退火次數(shù)
%?K=0.0001;
tic;
IDXN=IDXO;
while?T>Tover
????tt=0;
????for?inner=1:L???????
????????%產(chǎn)生隨機(jī)擾動(dòng)即隨機(jī)改變一個(gè)聚類樣品的當(dāng)前所屬類別
????????t1=fix(rand*num+1);??????%隨機(jī)抽取一個(gè)樣本
????????t2=fix(rand*(centernum-1)+1);???%隨機(jī)生成1~3的整數(shù)
????????if(IDXN(t1)+t2>centernum)
????????????IDXN(t1)=IDXN(t1)+t2-centernum;
????????else
????????????IDXN(t1)=IDXN(t1)+t2;
????????end
%?????????t1=fix(rand*(num-1)+1);??????%隨機(jī)抽取一個(gè)樣本
%?????????t2=fix(rand*(centernum-1)+1);???%隨機(jī)生成1~4的整數(shù)
%?????????if(IDXN(t1)+t2>centernum)
%?????????????IDXN(t1)=IDXN(t1)+t2-centernum;
%?????????else
%?????????????IDXN(t1)=IDXN(t1)+t2;
%?????????end
%?????????IDXN(t1)=t2;
??????????IDXN;
????????%重新計(jì)算聚類中心
????????p1=find(IDXN==1);%聚類號(hào)為1的樣品在p中的序號(hào)
?????

?屬性????????????大小?????日期????時(shí)間???名稱
-----------?---------??----------?-----??----
?????目錄???????????0??2018-05-31?10:04??模式識(shí)別ppt\
?????目錄???????????0??2018-05-31?10:04??模式識(shí)別ppt\第七章\
?????文件??????524935??2018-05-31?10:04??模式識(shí)別ppt\第七章\模擬退火算法聚類設(shè)計(jì).pptx
?????目錄???????????0??2018-05-31?10:04??模式識(shí)別ppt\第三章\
?????文件??????696832??2018-05-31?10:04??模式識(shí)別ppt\第三章\基于Fisher的分類器設(shè)計(jì).ppt
?????文件??????581120??2018-05-31?10:04??模式識(shí)別ppt\第三章\基于LMSE的分類器設(shè)計(jì).ppt
?????文件??????466432??2018-05-31?10:04??模式識(shí)別ppt\第三章\基于支持向量機(jī)的分類法.ppt
?????目錄???????????0??2018-05-31?10:04??模式識(shí)別ppt\第九章\
?????文件??????612491??2018-05-31?10:04??模式識(shí)別ppt\第九章\蟻群算法聚類設(shè)計(jì).pptx
?????目錄???????????0??2018-05-31?10:04??模式識(shí)別ppt\第二章\
?????文件??????680960??2018-05-31?10:04??模式識(shí)別ppt\第二章\基于最小錯(cuò)誤率貝葉斯分類器的設(shè)計(jì).ppt
?????文件??????695296??2018-05-31?10:04??模式識(shí)別ppt\第二章\基于最小風(fēng)險(xiǎn)貝葉斯分類器的設(shè)計(jì).ppt
?????目錄???????????0??2018-05-31?10:04??模式識(shí)別ppt\第五章\
?????文件??????303103??2018-05-31?10:04??模式識(shí)別ppt\第五章\模糊C均值聚類.pptx
?????文件??????443217??2018-05-31?10:04??模式識(shí)別ppt\第五章\模糊ISODATA聚類.pptx
?????文件?????1753817??2018-05-31?10:04??模式識(shí)別ppt\第五章\模糊神經(jīng)網(wǎng)絡(luò).pptx
?????文件??????707181??2018-05-31?10:04??模式識(shí)別ppt\第五章\模糊聚類.pptx
?????目錄???????????0??2018-05-31?10:04??模式識(shí)別ppt\第八章\
?????文件?????1131067??2018-05-31?10:04??模式識(shí)別ppt\第八章\遺傳算法聚類設(shè)計(jì).pptx
?????目錄???????????0??2018-05-31?10:04??模式識(shí)別ppt\第六章\
?????文件?????1052704??2018-05-31?10:04??模式識(shí)別ppt\第六章\BP神經(jīng)網(wǎng)絡(luò)設(shè)計(jì).pptx
?????文件??????322995??2018-05-31?10:04??模式識(shí)別ppt\第六章\CPN神經(jīng)網(wǎng)絡(luò).pptx
?????文件??????900135??2018-05-31?10:04??模式識(shí)別ppt\第六章\GRNN神經(jīng)網(wǎng)絡(luò)設(shè)計(jì).pptx
?????文件??????341520??2018-05-31?10:04??模式識(shí)別ppt\第六章\Hopfield(DHNN)網(wǎng)絡(luò)設(shè)計(jì).pptx
?????文件??????439646??2018-05-31?10:04??模式識(shí)別ppt\第六章\pnn設(shè)計(jì).pptx
?????文件??????700281??2018-05-31?10:04??模式識(shí)別ppt\第六章\RBF神經(jīng)網(wǎng)絡(luò)設(shè)計(jì).pptx
?????文件??????395549??2018-05-31?10:04??模式識(shí)別ppt\第六章\學(xué)習(xí)向量量化神經(jīng)網(wǎng)絡(luò)(LVQ)設(shè)計(jì).pptx
?????文件??????735685??2018-05-31?10:04??模式識(shí)別ppt\第六章\小波神經(jīng)網(wǎng)絡(luò)設(shè)計(jì).pptx
?????文件??????480173??2018-05-31?10:04??模式識(shí)別ppt\第六章\自組織特征映射神經(jīng)網(wǎng)絡(luò).(SOM).pptx
?????文件??????268990??2018-05-31?10:04??模式識(shí)別ppt\第六章\自組織競(jìng)爭(zhēng)網(wǎng)絡(luò)設(shè)計(jì).pptx
?????目錄???????????0??2018-05-31?10:04??模式識(shí)別ppt\第十章\
............此處省略131個(gè)文件信息

評(píng)論

共有 條評(píng)論

相關(guān)資源