xxxx18一60岁hd中国/日韩女同互慰一区二区/西西人体扒开双腿无遮挡/日韩欧美黄色一级片 - 色护士精品影院www

  • 大小: 5KB
    文件類型: .zip
    金幣: 2
    下載: 0 次
    發(fā)布日期: 2021-06-14
  • 語(yǔ)言: Matlab
  • 標(biāo)簽: SD??LMS??MATLAB??

資源簡(jiǎn)介

學(xué)習(xí)維納濾波原理及自適應(yīng)算法時(shí),編寫的SD算法和LMS算法在統(tǒng)一條件下的仿真,有畫SD算法的學(xué)習(xí)曲線和權(quán)值變化曲線,LMS算法的多次實(shí)驗(yàn)下的學(xué)習(xí)曲線和權(quán)系數(shù)更新曲線。參考教材:現(xiàn)代數(shù)字信號(hào)處理及其應(yīng)用(何子述、夏威)

資源截圖

代碼片段和文件信息

clc
clear?all
%******************************************%
%*********Speech?channel?model*************%
%******************************************%
%輸入?yún)?shù):
%?????????data?????????????激勵(lì)信號(hào)序列序列(列向量)

%輸出參數(shù)
%?????????speech_signal?????輸出語(yǔ)音信號(hào)(列向量)

%初始化
data_average=0;%激勵(lì)信號(hào)均值
data_variance=0.27;%激勵(lì)信號(hào)方差
iterations=500;%迭代次數(shù)

data=normrnd(data_averagesqrt(data_variance)1iterations).‘;%產(chǎn)生白噪聲序列

%畫圖(白噪聲data)
figure(1)
subplot(311)
plot(data‘y‘);
grid?on
title(sprintf(‘N(%d%d)分布的白噪聲序列‘data_averagedata_variance));
subplot(312)
R_data=xcorr(data‘‘);
plot(R_data‘m‘);
grid?on
title(sprintf(‘N(%d%d)分布的噪聲序列自相關(guān)函數(shù)‘data_averagedata_variance));
subplot(313)
periodogram(data[]1024250);
title(sprintf(‘N(%d%d)分布的噪聲序列功率譜密度‘data_averagedata_variance));
%結(jié)束畫圖
speech_signal?=?filter(1[10.8458]data);

%畫圖
figure(2)
subplot(211)
plot(speech_signal‘m‘);
title(‘語(yǔ)音信號(hào)序列‘);
axis([-10?510?-5?5]);
%結(jié)束畫圖

%******************************************%
%******Transmission?signal?model***********%
%******************************************%
%輸入?yún)?shù):
%????????speech_signal????激勵(lì)信號(hào)序列序列(列向量)
%????????noise????????????信道中的加性噪聲(列向量)
%輸出參數(shù)
%????????data_in_fiter????輸出經(jīng)過(guò)信道的帶噪語(yǔ)音信號(hào)(列向量)
noise_average=0;%噪聲均值
noise_variance=0.1;%噪聲方差

noise=normrnd(noise_averagesqrt(noise_variance)1iterations).‘;
data_in_fiter?=?filter(1[1-0.9458]speech_signal)+noise;

%畫圖
subplot(212)
plot(data_in_fiter‘r‘);
title(‘輸出經(jīng)過(guò)信道的帶噪語(yǔ)音信號(hào)序列‘);
axis([-10?510?-5?5]);
%結(jié)束畫圖

%******************************************%
%*************Least?Mean?Square************%
%******************************************%

%輸入?yún)?shù):
%?????????data_in_fiter????濾波器輸入信號(hào)序列(列向量)
%?????????expct_data???????所期望的響應(yīng)序列(列向量)
%?????????M_rank???????????濾波器階數(shù)(標(biāo)量)
%?????????u_step???????????濾波器步長(zhǎng)(標(biāo)量)

%輸出參數(shù)
%????????weight????????????濾波器權(quán)值矩陣(矩陣?M_rank*length(data_in_fiter))
%??????????????????????????設(shè)迭代次數(shù)即為其輸入序列長(zhǎng)度
%????????erro??????????????誤差序列(length(data_in_fiter)*i)
%????????real_data?????????實(shí)際輸出序列
%????????mse???????????????均方誤差

%輸入?yún)?shù)賦值
expct_data?=?speech_signal;
M_rank?=?2;
u_step?=?0.02;

%初始化
n?=?0;%迭代次數(shù)
weight?=?zeros(M_rankiterations);%權(quán)重
erro?=?zeros(1iterations);%誤差
data_instantaneous?=?zeros(1iterations+M_rank-1).‘;%輸入序列瞬時(shí)值
real_data?=?zeros(1iterations);%期望信號(hào)估計(jì),實(shí)際輸出的序列
mse?=?zeros(1iterations);%均方誤差

erro(1)?=?expct_data(1)?-?real_data(1);
data_instantaneous(1:iterations:)?=??flipud(data_in_fiter);%flipud?實(shí)現(xiàn)倒序
mse(1)?=?erro(1)^2;

for?n?=?1:(iterations-1)
????data_temporary?=?data_instantaneous((iterations+1-n):(iterations+M_rank-n));%臨時(shí)
????weight(:n+1)?=?weight(:n)?+?u_step*data_temporary*conj(erro(n));
????data_temporary?=?data_instantaneous((iterations-n):(iterations+M_rank-n-1));%臨時(shí)
????real_data(n+1)?=?weight(:n+1)‘*data_temporary;
????erro(n+1)?=?expct_data(n+1)?-?real_data(n+1);
????mse(n+1)?=?erro(n+1)^2;
end
%畫圖
figure(3)
plot(mse‘r‘);
title(‘LMS算法一次實(shí)驗(yàn)學(xué)習(xí)曲線‘);
xlabel(‘迭代次數(shù)n‘)
ylabel

?屬性????????????大小?????日期????時(shí)間???名稱
-----------?---------??----------?-----??----
?????目錄???????????0??2019-10-31?20:34??SD&LMS\
?????文件????????4351??2019-10-29?15:02??SD&LMS\least_mean_square.m
?????文件????????6172??2019-10-31?20:25??SD&LMS\least_mean_square_ex.m
?????文件????????1460??2019-10-31?20:30??SD&LMS\LMS.m
?????文件????????3196??2019-10-31?19:18??SD&LMS\steepest_descent_method.m

評(píng)論

共有 條評(píng)論