xxxx18一60岁hd中国/日韩女同互慰一区二区/西西人体扒开双腿无遮挡/日韩欧美黄色一级片 - 色护士精品影院www

  • 大小: 7.25MB
    文件類型: .pdf
    金幣: 1
    下載: 0 次
    發布日期: 2023-10-13
  • 語言: 數據庫
  • 標簽: 強化學習??

資源簡介

Statistical Reinforcement Learning: Modern Machine Learning Approaches Masashi Sugiyama Taylor & Francis, 16 Mar 2015 - Business & Economics - 206 pages Reinforcement learning is a mathematical framework for developing computer agents that can learn an optimal behavior by relating generic reward signals with its past actions. With numerous successful applications in business intelligence, plant control, and gaming, the RL framework is ideal for decision making in unknown environments with large amounts of data. Supplying an up-to-date and accessible introduction to the field, Statistical Reinforcement Learning: Modern Machine Learning Approaches presents fundamental concepts and practical algorithms of statistical reinforcement learning from the modern machine learning viewpoint. It covers various types of RL approaches, including model-based and model-free approaches, policy iteration, and policy search methods. Covers the range of reinforcement learning algorithms from a modern perspective Lays out the associated optimization problems for each reinforcement learning scenario covered Provides thought-provoking statistical treatment of reinforcement learning algorithms The book covers approaches recently introduced in the data mining and machine learning fields to provide a systematic bridge between RL and data mining/machine learning researchers. It presents state-of-the-art results, including dimensionality reduction in RL and risk-sensitive RL. Numerous illustrative examples are included to help readers understand the intuition and usefulness of reinforcement learning techniques. This book is an ideal resource for graduate-level students in computer science and applied statistics programs, as well as researchers and engineers in related fields.

資源截圖

代碼片段和文件信息

評論

共有 條評論

相關資源